Bootstrapping Informative Graph Augmentation via A Meta Learning Approach

Hang $Gao^{1,2*}$, Jiangmeng $Li^{1,2*}$, Wenwen $Qiang^{1,2\dagger}$, Lingyu $Si^{1,2}$, Fuchun Sun^3 , Changwen Zheng²

¹University of Chinese Academy of Sciences
²Institute of Software Chinese Academy of Sciences
³Tsinghua University

{gaohang, jiangmeng2019, wenwen2018, lingyu, changwen}@iscas.ac.cn, fcsun@tsinghua.edu.cn

IJCAI 2022

Code: github.com/hang53/mega

2022.06.15 • ChongQing

Introduction

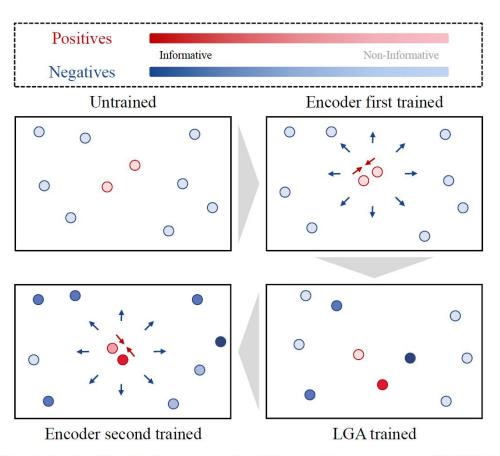


Figure 1: An illustration example of the training process of MEGA. The figure shows the features in hidden space during training. Red points depicts the positive features and blue points depicts the negative features at the instance-level. The gradation of color denotes the informativeness at the feature-level.

Learnable Graph Augmenter (LGA)

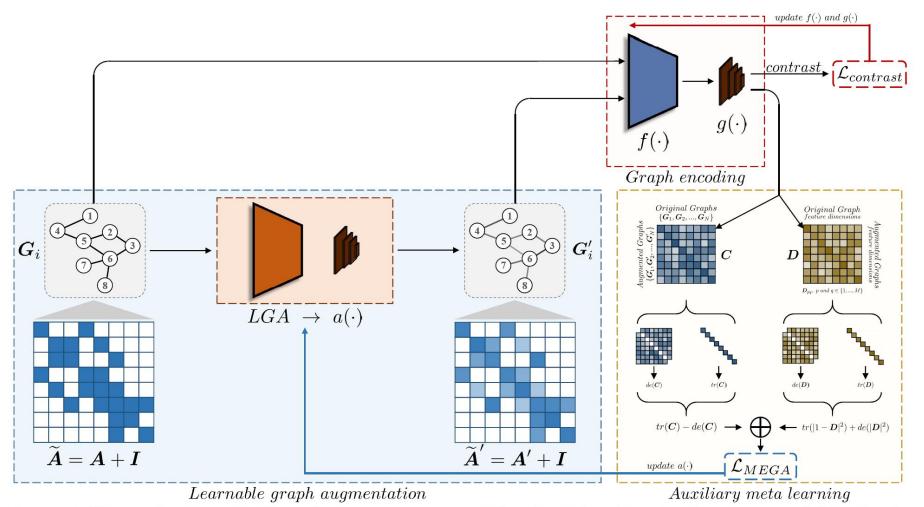


Figure 2: MEGA's architecture. MEGA uses LGA to generate augmented graph, which and the original graph are encoded together. In one iteration, the encoder and projection head are trained by back-propagating $\mathcal{L}_{contrast}$, and in the next iteration, the LGA is trained by performing the second-derivative technique on \mathcal{L}_{MEGA} . The encoder is trained until convergence.

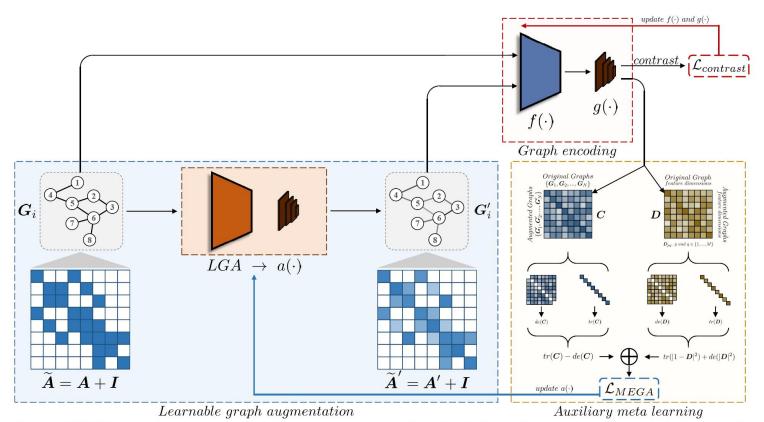


Figure 2: MEGA's architecture. MEGA uses LGA to generate augmented graph, which and the original graph are encoded together. In one iteration, the encoder and projection head are trained by back-propagating $\mathcal{L}_{contrast}$, and in the next iteration, the LGA is trained by performing the second-derivative technique on \mathcal{L}_{MEGA} . The encoder is trained until convergence.

$$m{H}_{m{v}}^{(k+1)} = combine^{(k)} \Big(m{H}_{m{v}}^k, aggregate^{(k)} (m{H}_{m{u}}^k \ , orall m{u} \in \mathcal{N}(m{v}) \Big) \Big), \quad (1)$$

$$\boldsymbol{h}_i = readout(\boldsymbol{H}_{\boldsymbol{v}}, \boldsymbol{v} \in \boldsymbol{V}_i).$$
 (2)

$$\mathcal{L}_{contrast} = -\log \frac{\exp\left(\frac{\langle \mathbf{z}^{+} \rangle}{\tau}\right)}{\exp\left(\frac{\langle \mathbf{z}^{+} \rangle}{\tau}\right) + \sum \exp\left(\frac{\langle \mathbf{z}^{-} \rangle}{\tau}\right)}$$
(3)

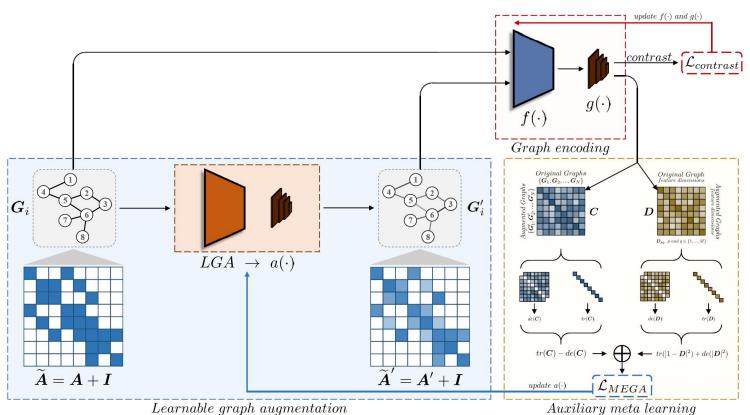


Figure 2: MEGA's architecture. MEGA uses LGA to generate augmented graph, which and the original graph are encoded together. In one iteration, the encoder and projection head are trained by back-propagating $\mathcal{L}_{contrast}$, and in the next iteration, the LGA is trained by performing the second-derivative technique on \mathcal{L}_{MEGA} . The encoder is trained until convergence.

$$\underset{\sigma}{\operatorname{arg\,min}} \left(\mathcal{L}_{MEGA} \left(g_{\mathring{\varphi}} \left(f_{\mathring{\phi}}(\boldsymbol{G}) \right), g_{\mathring{\varphi}} \left(f_{\mathring{\phi}}(a_{\sigma}(\boldsymbol{G})) \right) \right) \right) \tag{4}$$

$$\dot{\hat{\phi}} = \phi - \ell \nabla_{\phi} \left(\mathcal{L}_{contrast} \left(g_{\varphi} (f_{\phi}(\mathbf{G})), g_{\varphi} (f_{\phi}(\mathbf{G}')) \right) \right)$$

$$\dot{\hat{\varphi}} = \varphi - \ell \nabla_{\varphi} \left(\mathcal{L}_{contrast} \left(g_{\varphi} (f_{\phi}(\mathbf{G})), g_{\varphi} (f_{\phi}(\mathbf{G}')) \right) \right)$$
(5)

$$\sigma = \sigma - \ell' \nabla_{\sigma} \left(\mathcal{L}_{MEGA} \left(g_{\mathring{\varphi}} \left(f_{\mathring{\phi}}(\mathbf{G}) \right), g_{\mathring{\varphi}} \left(f_{\mathring{\phi}}(\widehat{\mathbf{G}'}) \right) \right) \right)$$
 (6)

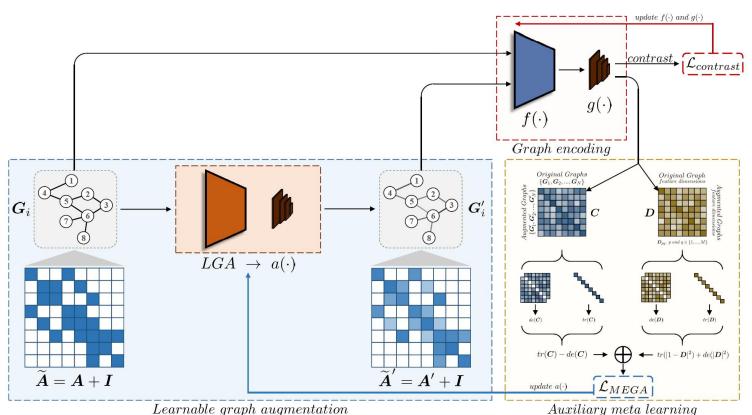


Figure 2: MEGA's architecture. MEGA uses LGA to generate augmented graph, which and the original graph are encoded together. In one iteration, the encoder and projection head are trained by back-propagating $\mathcal{L}_{contrast}$, and in the next iteration, the LGA is trained by

performing the second-derivative technique on \mathcal{L}_{MEGA} . The encoder is trained until convergence.

$$\mathcal{L}_{MEGA} = \underbrace{tr(\boldsymbol{C}) - de(\boldsymbol{C})}_{instance\ term} + \lambda \underbrace{\left(tr(|\mathbb{1} - \boldsymbol{D}|^2) + de(|\boldsymbol{D}|^2)\right)}_{feature\ term}$$
(7)

$$de(M) = \sum_{i} \sum_{j \neq i} M_{ij}. \mid \cdot \mid^2$$

$$|M|^2 = M \times M$$

$$C_{ij} = \frac{\boldsymbol{z}_i \cdot \boldsymbol{z}_j'}{|\boldsymbol{z}_i| \cdot |\boldsymbol{z}_j'|} \tag{8}$$

$$\boldsymbol{D}_{pq} = \frac{\sum_{i} (\boldsymbol{z}_{i,p} \cdot \boldsymbol{z}'_{i,q})}{\sqrt{\sum_{i} (\boldsymbol{z}_{i,p})^{2}} \cdot \sqrt{\sum_{i} (\boldsymbol{z}'_{i,q})^{2}}}$$
(9)

Experiments

Method	PROTEINS	MUTAG	DD	COLLAB	RDT-M5K	IMDB-B	IMDB-M
GIN RIU	69.03 ± 0.33	87.61 ± 0.39	74.22 ± 0.30	63.08 ± 0.10	27.52 ± 0.61	51.86 ± 0.33	32.81 ± 0.57
InfoGraph	72.57 ± 0.65	87.71 ± 1.77	75.23 ± 0.39	70.35 ± 0.64	51.11 ± 0.55	71.11 ± 0.88	48.66 ± 0.67
GraphCL	72.86 ± 1.01	88.29 ± 1.31	74.70 ± 0.70	71.26 ± 0.55	53.05 ± 0.40	70.80 ± 0.77	48.49 ± 0.63
AD-GCL	73.46 ± 0.67	89.22 ± 1.38	74.48 ± 0.62	72.90 ± 0.83	53.15 ± 0.78	71.12 ± 0.98	48.56 ± 0.59
MEGA-IL	73.89 ± 0.62	90.34 ± 1.20	75.78 ± 0.63	73.54 ± 0.82	53.16 ± 0.65	71.08 ± 0.73	49.09 ± 0.79
MEGA	74.20 ± 0.73	91.10 ± 1.34	75.56 ± 0.63	73.96 ± 0.73	54.32 ± 0.79	71.95 ± 0.98	49.52 ± 0.62

Table 1: Performance of classification accuracy on datasets from TU Dataset (Averaged accuracy \pm std. over 10 runs). We highlight the best records in bold.

Method	molesol	mollipo	molbbbp	moltox21	molsider	
Wiethod	Regression ta	sks (RMSE ↓)	Classification tasks (ROC-AUC % ↑)			
GIN RIU	1.706 ± 0.180	1.075 ± 0.022	64.48 ± 2.46	71.53 ± 0.74	62.29 ± 1.12	
InfoGraph	1.344 ± 0.178	1.005 ± 0.023	66.33 ± 2.79	69.74 ± 0.57	60.54 ± 0.90	
GraphCL	1.272 ± 0.089	0.910 ± 0.016	68.22 ± 1.89	72.40 ± 1.01	61.76 ± 1.11	
AD-GCL	1.270 ± 0.092	0.926 ± 0.037	68.26 ± 1.32	71.08 ± 0.93	61.83 ± 1.14	
MEGA-IL	1.153 ± 0.103	0.852 ± 0.022	68.34 ± 1.38	72.08 ± 0.82	63.37 ± 0.87	
MEGA	1.121 ± 0.092	0.831 ± 0.018	69.71±1.56	72.45 ± 0.67	62.92 ± 0.76	

Table 2: Performance of chemical molecules property prediction in OGB datasets. There are two kinds of tasks, regression tasks and classification tasks. We highlight the best records in bold.

Experiments

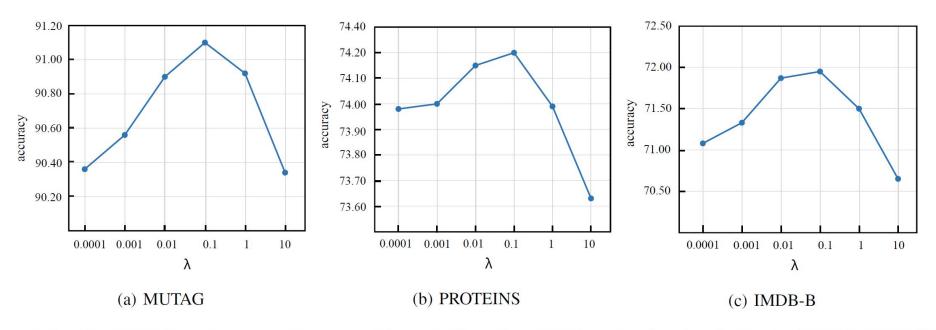


Figure 3: Results of MEGA's performance with a range of factor λ . We perform MEGA on three benchmark datasets: MUTAG, PROTEINS, and IMDB-B. The abscissa axis represents the value of λ , and the ordinate axis represents the accuracies.

Experiments

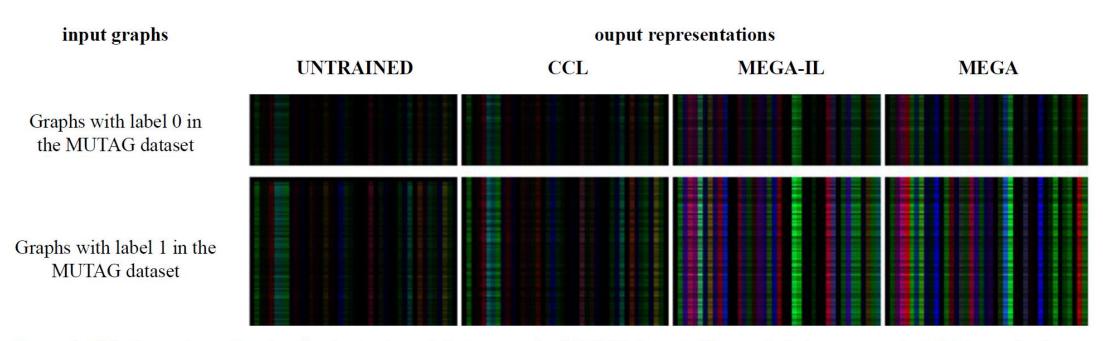


Figure 4: This figure shows the visualized output graph features on the MUTAG dataset. The graph features are projected into a color image in RGB format, where different colors represent different types of features. The abscissa axis represents the output feature dimensions of compared methods, and the ordinate axis represents graphs of different classes.

Thanks